

.............

FACULTY OF ENGINEERING AND TECHNOLOGY

Department of Mechanical Engineering

MEPS102:Strength of Material

Lecture 25

Topic:25. Introduction, Differential equation of the deflection curve

Instructor:

Aditya Veer Gautam

Introduction

- ✓ When a beam with a straight longitudinal axis is loaded by lateral forces, the axis is deformed into a curve, called the deflection curve of the beam.
- ✓ Most procedures for finding beam deflections are based on the differential equations of the deflection curve and their associated relationships.
- ✓ The calculation of deflections is an important part of structural analysis and design. For example, finding deflections is an essential ingredient in the analysis of statically indeterminate structures.
- ✓ Deflections are also important in dynamic analyses, as when investigating the vibrations of aircraft or the response of buildings to earthquakes.
- ✓ Deflections are sometimes calculated in order to verify that they are within tolerable limits.

- ✓ Consider a cantilever beam with a concentrated load acting upward at the free end.
- ✓ Due to this load, the axis of the beam deforms into a curve
- ✓ The reference axes have their origin at the fixed end of the beam
 - ✓ x axis directed to the right and the y axis directed upward.
 - ✓ z axis is directed outward from the figure (toward the viewer).
 - ✓ xy plane is a plane of symmetry of the beam
 - ✓ all loads act in this plane (the plane of bending)
- \checkmark The deflection \mathbf{v} is the displacement in the \mathbf{y} direction of any point on the axis of the beam

- \checkmark To obtain the equation of the deflection curve, we must express the deflection vas a function of the coordinate \mathbf{x} .
- ✓ When the beam is bent, there is not only a deflection at each point along the
 axis but also a rotation
- The angle of rotation $\boldsymbol{\theta}$ (angle of inclination or angle of slope) of the axis of the beam is the angle between the \boldsymbol{x} axis and the tangent to the deflection curve. $\boldsymbol{\rho}$ is radius of curvature and $\boldsymbol{\kappa}$ is curvature. Sign convention of curvature is positive when the angle of rotation increases as we move along the beam in the positive \boldsymbol{x} direction. Since $ds \approx dx$

$$\kappa = \frac{1}{\rho} = \frac{d\theta}{ds} = \frac{d\theta}{dx}$$

 \checkmark From above diagram on the right side we can see that. Also Θ is very small so $\tan \theta \approx \theta$

$$\theta \approx \tan \theta = \frac{dv}{dx}$$

✓ From above two equations we get

$$\frac{1}{\rho} = \frac{d\theta}{dx} = \frac{d^2v}{dx^2}$$

- ✓ This equation is valid for a beam of any material, provided the rotations are small quantities.
- ✓ If the material of a beam is linearly elastic and follows Hooke's law, the curvature then

$$\frac{1}{\rho} = \frac{M}{EI}$$

✓ Therefore, combining equations, we get Differential equation of the deflection curve

$$\frac{d^2v}{dx^2} = \frac{M}{EI}$$

✓ We know that $\frac{dM}{dx} = V$ and $\frac{dV}{dx} = -q$ so we can write above equation in other forms

Other Differential Equation

Bending –moment equation	Shear-force equation	Load equation
$EI\frac{d^2v}{dx^2} = M$ or $EIv'' = M$	$EI\frac{d^3v}{dx^3} = V$ or $EIv''' = V$	$EI\frac{d^4v}{dx^4} = -q$ or $EIv'''' = -q$

9.2-1 The deflection curve for a simple beam AB (see figure) is given by the following equation:

$$v = -\frac{q_0 x}{360 LEI} (7L^4 - 10L^2 x^2 + 3x^4)$$

Describe the load acting on the beam.

9.2-2 The deflection curve for a simple beam AB (see figure) is given by the following equation:

$$v = -\frac{q_0 L^4}{\pi^4 EI} \sin \frac{\pi x}{L}$$

- (a) Describe the load acting on the beam.
- (b) Determine the reactions R_A and R_B at the supports.
- (c) Determine the maximum bending moment M_{max} .

9.2-3 The deflection curve for a cantilever beam AB (see figure) is given by the following equation:

$$v = -\frac{q_0 x^2}{120 LEI} (10L^3 - 10L^2 x + 5Lx^2 - x^3)$$

Describe the load acting on the beam.

9.2-4 The deflection curve for a cantilever beam AB (see figure) is given by the following equation:

$$v = -\frac{q_0 x^2}{360 L^2 EI} (45 L^4 - 40 L^3 x + 15 L^2 x^2 - x^4)$$

- (a) Describe the load acting on the beam.
- (b) Determine the reactions R_A and M_A at the support.