Lecture No 15 Topic: Derivation


```
The equation of Line is: Y=mx+c ....(1)
Here m is the slope of Line and C is y-Intercept
     of line. The slope can also be written as
    \frac{y_2 - y_1}{x_2 - x_1} \text{ or } \frac{\text{change in } x}{\text{change in } y} \text{ or } \frac{dx}{dy} \qquad \dots (2)
Fir
                                                       ope
     is less than 1, then X will always be
     incremented. so at (m \le 1)
we calculate the d1 which is distance between
     intersection point y to the pixel yk
So, d1 = y - yk
d1 = mxk+1 + c - yk
                                      by using \dots(1)
```

Similarly d2 is the distance between pixel yk+1 and intersection point y. d2 = yk+1-yd2 = yk+1-(mxk+1+c) by using(1)

Note: here x is always incrementing so we can write xk+1 as xk +1 and here yk+1 is next pixel so we can write it as yk+1.

subtracting d2 from d1 d1-d2 = m(xk+1) +c -yk - [yk+1-(mxk+1+c)] = m(xk+1)+c -yk - yk-1+m(xk+1)+c d1-d2 = 2m(xk+1)-2yk+2c-1(3)

$$d_1 - d_2 = 2 \frac{dy}{dx}(x_k + 1) - 2y_k + 2c - 1$$
 by using...(2)

- Multiplying both side by (dx) dx(d₁-d₂) = 2dy(x_k+1)-2dx(y_k)+2dx(c)-dx
- Now we need to find decision parameter $P_K = dx(d_1-d_2)$ and,
- C = 2dy+2dx(c)-dx which is constant
- So new equation is.

$$P_{K} = 2dy(x_{k}) - 2dx(y_{k}) + C$$
(4)

Now our next parameter will be

 $P_{K+1} = 2dy(x_{k+1}) - 2dx(y_{k+1}) + C \dots (5)$

Subtracting Pk from PK+1

 $P_{k+1}-P_k = 2dy(x_{k+1}-x_k)-2dx(y_{k+1}-y_k) + C-C$

Note: here x is always incrementing so we can write x_{k+1} as $x_k + 1$ $P_{k+1}-P_k = 2dy(x_k-x_k+1)-2dx(y_{k+1}-y_k)$ $P_{k+1} = P_k+2dy-2dx(y_{k+1}-y_k)$(6)

• when $P_k < 0$ then $(d_1 - d_2) < 0$

So d₁ < d₂ then we will write y_{k+1} as y_k because current pixel's distance from intersection point y is smaller.so, we will have to choose current pixel. Then our formula will be:

•
$$P_{k+1} = P_k + 2 dy - 2 dx(y_k - y_k)$$

•
$$P_{k+1} = P_k + 2 dy$$

- And when $P_k > 0$ then $(d_1 d_2) > 0$
- So $d_1 > d_2$ then we will write y_{k+1} as y_k+1 because current pixel's distance from intersection point y is larger.so, we will have to choose upper pixel.
- > At that time our formula will be:

$$P_{k+1} = P_k + 2dy - 2dx(y_k + 1 - y_k)$$

$$P_{k+1} = P_k + 2dy - 2dx$$

- We can say that $(y_{k+1}-y_k)$ value can either be 0 or 1. For Initial decision parameter
- From 4th equation

$$\begin{aligned} P_{K} &= 2dy(x_{k}) - 2dx(y_{k}) + C \\ P_{K} &= 2dy(x_{k}) - 2dx(y_{k}) + 2dx(c) - dx + 2dy \end{aligned}$$

By using 1st equation $y_k = m(x_k) + c$ $c = y_k - m(x_k)$ $P_0 = 2dy(x_k) - 2dx(y_k) + 2dx(y_k - m(x_k) - dx \text{ (By using 2)})$ $= 2dy(x_k) - 2dx(y_k) + 2dxy_k - 2dyx_k + 2dy - dx$ $P_0 = 2dy - dx$

But if the slope of line is greater then 1 (m>1). then our Y coordinate will always be incremented and we have to choose between x_k or x_{k+1}.

So, our Line equation will be:

$$\mathbf{Y}_{k+1} = \mathbf{m}(\mathbf{x}) + \mathbf{c}$$