Derivation

Now, In this case our d₁ will be the distance between intersection point x and pixel x_k d₁= x-x_k By using(7) d₁= 1/m(y_{k+1}-c)-x_k And similarly our d₂ will be the distance between intersection point x and

- pixel x_{k+1} $d_2 = x_{k+1} - x$ By using(7) $d_2 = x_{k+1} - 1/m(y_{k+1} - c)$
- Note: here y is always incrementing so we can write y_{k+1} as y_k+1 and here x_{k+1} is next pixel so we can write it as x_k+1 . subtracting d_2 from d_1 $d_1-d_2=1/m(y_k+1-c)-x_k-[x_k+1-1/m(y_k+1-c)]$ $=1/m(y_k+1-c)-x_k-x_k-1+1/m(y_k+1-c)$ $d_1-d_2=2/m(y_k+1-c)-2x_k-1$ $d_1-d_2=2dx(y_k+1-c)-2dyx_k-dy$

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

Lecture No 16 Topic: Derivation

- Multiplying both side by (dy) $dy(d_1-d_2) = 2dxy_k+2dx-2dxc-2dyx_k-dy$
- Now we need to find decision parameter P_K $P_K = dy(d_1-d_2)$ C = 2dx-2dxc-dy which is constant So new equation is $P_K = 2dxy_k-2dyx_k + C$ (8)
- Now our next parameter will be $P_{k+1} = 2dx(y_{k+1}) 2dy(x_{k+1}) + C$
- Substracting P_k from P_{k+1} $P_{k+1}-P_k=2dx(y_{k+1}-y_k)-2dy(x_{k+1}-x_k)+C-C$ Note: here x is always incrementing so we can write y_{k+1} as y_k+1

$$\begin{array}{l} P_{k+1} - P_k = 2 \, dx (y_k + 1 - y_k) - 2 \, dy (x_{k+1} - x_k) \\ P_{k+1} = P_k + 2 \, dx - 2 \, dy (x_{k+1} - x_k) \\ \text{when } P_k < 0 \text{ then } (d_1 - d_2) < 0 \end{array}$$

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

Derivation

So $d_1 < d_2$ then we will write x_{k+1} as x_k because current pixel's distance from intersection point x is smaller.so, we will have to choose current pixel.

Then our formula will be:

$$P_{k+1} = P_k + 2dx - 2dy(x_k - x_k)$$

 $P_{k+1} = P_k + 2dx$
And when $P_k > 0$ then $(d_1 - d_2) > 0$

- So $d_1 > d_2$ then we will write x_{k+1} as $x_k + 1$ because current pixel's distance from intersection point x is Larger.so, we will have to choose next pixel.
- At that time our formula will be: $P_{k+1} = P_k + 2dx 2dy(x_k + 1 x_k)$ $P_{k+1} = P_k + 2dx 2dy$

Derivation

- For Initial decision parameter From 8^{th} equation $P_K = 2dxy_k-2dyx_k + C$ $P_0 = 2dxy_0+2dx-2dxc-2dyx_0-dy$
 - By using 1^{st} equation $y_k = m(x_k) + c$
- $c=y_k-m(x_k)P_0 = 2dxy_0-2dyx_0+2dx-2dx(y_0-m(x_0))-dy$ $P_0 = 2dxy_0-2dyx_0+2dx-2dxy_0+2dyx_0-dy$ (By using 2) $P_0 = 2dx-dy$

hence formulas for bresenham is derived.


```
Bresenham's Line Drawing Algorithm
                                                                             while(x < x1)
#include<stdio.h>
                                                                                 { x++:
#include<conio.h>
                                                                                if(pk<0){
#include<graphics.h>
                                                                                     pk+=2*dy;
void main()
                                                                                else{y++;
                                                                                pk+=2*(dy-dx);
int gd = DETECT,gm;
initgraph(&gd,&gm,"C:\\TurboC3\\BGI");
                                                                                putpixel(x,y,9);
int x,x1,y,y1,dx,dy,pk;
printf("Enter first co-ordinates");
scanf(" %d%d",&x,&y);
                                                                             getch();
printf("Enter second co-ordinates");
                                                                             closegraph();
scanf(" %d%d",&x1,&y1);
dx=x1-x;
dy=y1-y;
pk=2*dy-dx;
```