
Continuity between curve segments 

• If the tangent vectors of two cubic curve segments are equal at the join point, the 

curve has first-degree continuity, and is said to be C1continuous 

• If the direction and magnitude of d  / dt  [Q(t)] through the nth derivative are 

equal at the join point, the curve is called Cn continuous  

• If the directions (but not necessarily the magnitudes) of two segments’ tangent 

vectors are equal at the join point, the curve has G1continuity 
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Parametric Cubic Curves 

• In order to assure C2 continuity our functions must be of at least degree 3.  

• Cubic has 4 degrees of freedom and can control 4 things. 

• Use polynomials:  x(t) of degree n is a function of t.  

 

• y(t) and z(t) are similar and each is handled independently  
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Lecture No 26 Topic: Hermite curves 

• A cubic polynomial  

• Polynomial can be specified by the position of, and gradient at, each endpoint of 

curve. 

• Determine:   x = X(t)  in terms of x0, x0
’, x1, x1

’ 

       Now:      X(t) = a3t3 + a2t2 + a1t + a0 

            and    X/(t) = 3a3t2 + 2a2t + a1 
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Finding Hermit coefficients 

• Substituting for t at each endpoint: 

• x0 = X(0) = a0                                  x0
’= X/(0) = a1 

• x1 = X(1) = a3 + a2 + a1 + a0             x1
’= X/(1) = 3a3 + 2a2+ a1 

• And the solution is: 

• a0 = x0                                              a1 = x0
’ 

• a2 = -3x0 – 2x0
’+ 3x1 – x1

’               a3 = 2x0 + x0
’ - 2x1 + x1

’ 

FET, RAMA UNIVERSITY,                       

Mr.Devendra Kr Lohia 



The Hermite matrix: MH 

• The resultant polynomial can be expressed in matrix form: 
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X(t) = tTMHq              ( q is the control vector)‏ 
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We can now define a parametric polynomial for each coordinate required 

independently, ie. X(t), Y(t) and Z(t)‏ 


