
Hermite Basis (Blending) Functions 
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The graph shows the shape of the four 

basis functions – often called blending 

functions. 

They are labelled with the elements of 

the control vector that they weight. 

Note that at each end only position is 

non-zero, so the curve must touch the 

endpoints 



Family of Hermite curves. 
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Lecture No 27 Topic: Bézier Curves 

• Hermite cubic curves are difficult to model – need to specify point and 

gradient. 

• More intuitive to only specify points. 

• Pierre Bézier (an engineer at Renault) specified 2 endpoints and 2 

additional control points to specify the gradient at the endpoints. 

• Can be derived from Hermite matrix: 

– Two end control points specify tangent 
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Bézier Curves 

• Note the Convex Hull has been 

shown as a dashed line – used as a 

bounding extent for intersection 

purposes. 
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