Translation

- It is the movement of an object from one position to another position. Translation is done using translation vectors. There are three vectors in 3D instead of two. These vectors are in x, y, and z directions. Translation in the x-direction is represented using T_x. The translation is y-direction is represented using T_y. The translation in the z- direction is represented using T_z.
- If P is a point having co-ordinates in three directions (x, y, z) is translated, then after translation its coordinates will be $(x^1 y^1 z^1)$ after translation. $T_x T_y T_z$ are translation vectors in x, y, and z directions respectively.

FET, RAMA UNIVERSITY.

Mr Devendra Kr Lohia

$$x^{1}=x+T_{x}$$

 $y^{1}=y+T_{y}$
 $z^{1}=z+T_{z}$

Matrix for translation

Matrix representation of point translation

Point shown in fig is (x, y, z). It become (x^1, y^1, z^1) after translation. T_x T_y T_z are translation vector.

$$\begin{pmatrix} x^{1} \\ y^{1} \\ z^{1} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

Scaling

Scaling is used to change the size of an object. The size can be increased or decreased. The scaling three factors are required $S_x S_y$ and S_z .

S_x=Scaling factor in x- direction

 S_y =Scaling factor in y-direction S_z =Scaling factor in z-direction

Matrix for Scaling

$$\left\{ \begin{matrix} s_x \ 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right\}$$

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

Scaling of the object relative to a fixed point

Following are steps performed when scaling of objects with fixed point (a, b, c). It can be represented as below:

- Translate fixed point to the origin
- Scale the object relative to the origin
- Translate object back to its original positior

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

Lecture No 29 Topic: Rotation

