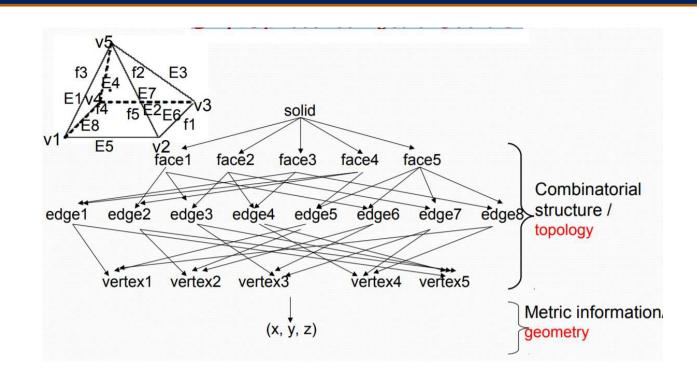


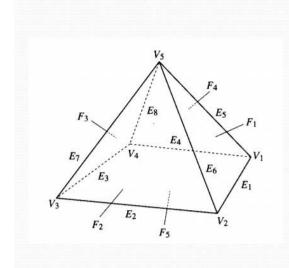
Solid model is defined by their enclosing surfaces or boundaries. This technique consists of the geometric information about the faces, edges and vertices of an object with the topological data on how these are connected.


B-rep model is created using Euler operation

Data structure:

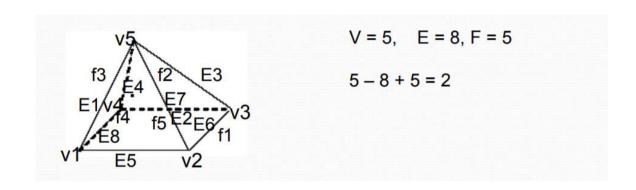
B-Rep graph store face, edge and vertices as nodes, with pointers, or branches between the nodes to indicate connectivity.

B-Rep data structure



FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

B-Rep data structure


Face Table		Edge Table		Vertex Table	
Face	Edges	Edge	Vertices	Vertex	Coordinates
$\mathbf{F_1}$	E_1, E_5, E_6	$\mathbf{E}_{\mathbf{l}}$	V_1, V_2	$\mathbf{v}_{_{1}}$	x_1, y_1, z_1
F_2	E_2 , E_6 , E_7	\mathbf{E}_{2}	V_2, V_3	V_2	$\mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2$
\mathbf{F}_3	E_3, E_7, E_8	E_3	V_3, V_4	V_3	x_3, y_3, z_3
F_4	E_4, E_8, E_5	$\mathbf{E_4}$	V_4, V_1	V_4	x_4, y_4, z_4
F_5	E_1, E_2, E_3, E_4	E_5	V_1, V_5	V_5	x_5, y_5, z_5
NATIONAL PROPERTY OF SALVEST CARCOLO		E_6	V_2, V_5	V_6	x_6, y_6, z_6
		\mathbf{E}_{7}	V_3, V_5	ALEGNA VIOLEN	
		E_8	V_4, V_5		

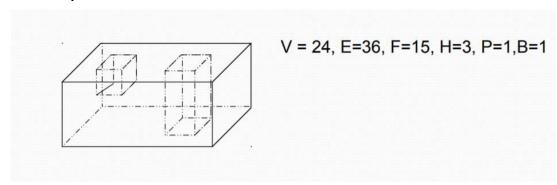
FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia

Lecture No 37 Topic: Boundary representationvalidity

☑Evaluation is based upon Euler's Law (valid for simple solid – no hole)

2V - E + F = 2 V- number of vertices E- number of edges F- number of faces

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia



②Expanded Euler's law for complex polyhedrons (with holes)

②Euler-Poincare Law:

②H – number of holes in face, P- number of passages or through holes, B- number of separate bodies.

FET, RAMA UNIVERSITY, Mr.Devendra Kr Lohia