Lecture Machine Design

+ SHEAR STRESS AND SHEAR STRAIN

* When the external force acting on a component tends to slide the adjacent planes with respect to each other, the resulting stresses
on these planes are called direct shear stresses. Two plates held together by means of a rivet are shown in Fig. 4.3 (a). The

average shear stress in the rivet is given by
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» where, t = shear stress (N/mm2 or MPa), A = cross-sectional area of the rivet (mm2 | | | —
| |
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A plane rectangular element, cut from the component and subjected to \L/ /J,-\
shear force, is shown in Fig. 4.4(a). Shear stresses cause a distortion (a) !
in the original right angles. The shear strain (g) is defi ned as the ! — |
change in the right angle of a shear element. Within the elastic limit, T — .
the stress—strain relationship is given by — |
r=0y | =
|

(b) (c)

Fig. 4.3 (a) Riveted Joint (b) Shear Deformation
(c) Shear Stress
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whore,

¥ = shear strain {radians )

7 is the constant of proportionality knowm as
shear modulus or madides af Figiditg {in N'mm? or

MPal).
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For carbon stecls, 7 = E0000 N'mm?®

For grey cast itom, (7 = 40000 W'mm?

The melatonship bebweoen  the modulus  of
clasticity, the modulus of ngidity and the Pokson’s
ratip is given by,

E=2G{1+p) {4l
where 2 is Poisson’s rato. Poisronk ratio & the
ratio of strain in the lakeral dircetion to that in the
axial dircotiom.

For carthon stocls, p= 020

For grey cast inomn, =021

The permissible shear stress is given by,

5

F

T (4.11)

where,

§_= yicld strength i shear (N/mm?® or MPa)

It will be proved at a later stase that the yield
strength in shear is 50% of the yield strength in
tension, according o the principal shear stress
thoory of failure,

STRESSES DUE TO BENDING MOMENT

A straight beam subjected to a bending moment Mb
is shown in Fig. 4.5(a). The beam is subjected to

a combination of tensile stress on one side of the
neutral axis and compressive stress on the other.
Such a stress distribution can be visualized by
bending a thick leather belt. Cracks will appear on
the outer surface, while folds will appear on the
inside. Therefore, the outside fi bres are in tension,
while the inside fi bres are in compression. The
bending stress at any fi bre is given by,

.1-]’_., ¥

: {(4.12)
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where,
T, =bendng stress ata distance of v from the
 newtral axis {N/mm? or MPa)
A, = applicd bending moment {MN-mm )
I'= moment of inertia of fhe cross-section about
the newtral axis {mm*)
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The bending stress is maximum in a fi bre, which is farthest from the neutral axis. The distribution of stresses is linear and the

stress is proportional to the distance from the neutral axis. _,}\T " .
* (i) The beam is straight with uniform crosssection. Z S — 1
» (ii) The forces acting on the beam lie in a plane perpendicular to the axis of the beam. / . \\ .
+ (iii) The material is homogeneous, isotropic and obeys Hooke’s law. x".l o8 / J
+ (iv) Plane cross-sections remain plane after bending. x"\% — q_f"_f- o
* The moment of inertia in EqQ. (4.12) is the area moment of inertia. For a rectangular cross-sectic x
bt

r (4.13) ' V--:‘;Z __‘_"---h\\}
12 o =
where, = l P 1'_
h = distance parallel to the newtral axis :_'_'-—_ — Megatve bending
— ¥

{ i)
d = distance perpendicular to the mewtral ¥ Posifive bending "
axis (mm ) )
For a crcular cross-secton, " /i\ o| X
4 ; ]
mwad ¢
(4 El *
where 4 1= the diameter of the cross-section. IhT-:T :ﬂ:ﬁm theorem for g ares 1 given
When the cross-saction i= irregular, a5 shown in by Fpress 'Ir T+ 4yl (4.16)
Fig. 4.6, the moment of inertia about the centroidal where g Ty U i
axiz X 1= mwven by, ' s _a .
= B ; [, = moment of mertia of the area about X, axis,

Ll

'rr; =1y d4 (4.13) which & parallel to the axis X, and located
ata distance v, from 1 ’
[ = moment of inertia of the area about its own
centroidal axis
A = area of the cross-section,
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« STRESSES DUE TO TORSIONAL MOMENT

« Atransmission shaft, subjected to an external torque, is shown in Fig. 4.8 (a). The internal stresses, which are induced to resist the
action of twist, are called torsional shear stresses. The torsional shear stress is given by

= M, r {4.17) The distribution of torsional shear stresses is shown 1N many prOb_lem_S Qf
where A in Fig. 4.% (b). The stress is maximum at the cuter Machine design, itis
T = torsional shear stress at the fibne (Nmm? fibre and zero at the axis of romtion. The angle of required
or MPaj twist is given by to calculate torque from the
A, = applied torque (N-mm) M, 18] power transml_tted an_d the
r = radial distance of the fibre from the E.i{iS of ~IG : speed of rotation. This

rotation { mm)
J = polar moment of mertia of the cross-section
about the axis of rotation { mm®)

iy
Fig. 48 (@ Shafi Subyeked o Tomtond Moment
i Dastnbubsm of Toraome Shear Streses

where,
B = angle of twist {radans)
! = length of the shaft {mm)

Equations {4.17) and {4.18) are hased on the

following assumptions:

{i] The shaft iz stmight with a circular cross-

sogtiomn.
{il) A planc tansversc section omains planc
after twisting.
{iii] The matenal & homogencois, isofropic and
obeys Hooke's law,
The polar meoment of inertia of a solid circular
shaft of diamecter & is given by

md®
= E 4.19
Faor a hollonw circular cross-soction,
g
po Tl —d) (4.20)

iz
Substituting Eqs (4. 19 and {4.20) in Eg. {4.1¥)
and converting @ from radians to degrecs,

58 M
= — d 4.21
P {deg) {4.21)
Departmgnto 2 M ineering{'d'z.l;:I (4.2

relationship is given by,

2mrl
e 2rnM,
60 ¢ 10°
where,
kW = transmitted power
(kw)

Mt = torque (N-mm)
n = speed of rotation (rpm)
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+ ECCENTRIC AXIAL LOADING
+ line of action of force passes through the centroid of the cross-section.

* There are certain mechanical components subjected to an external force, tensile or compressive, which does not pass through the
centroid of the cross-section. A typical example of such an eccentric loading is shown in Fig. 4.9(a).

» According to the principle of statics, the eccentric force P can be replaced by a parallel force P passing through the centroidal axis
along with a couple (P X e) as shown in Figs 4.9(b) and (c) respectively.

* In Fig. 4.9(b), the force P causes a uniformly distributed tensile stress of magnitude (P/A). In Fig. 4.9(c),

» the couple causes bending stress of magnitude (Pey/l). The resultant stresses at the cross-section are obtained by the principle of
superimposition of stresses. They are given by,
o= P Pey
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Fig.4.9 Eccentric Axial Load
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