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Therefore, the maximum shear stress theory

predicts that the vield strength in shear is half of

the vield strength in tension, ie.,

S, =058, (4.38)

Suppose ©;, o, and @, are the three principal
stresses at a point on the component, the shear
stresses on three different planes are given by,

or o -0=35, (b)
Similarly, '
0 -0 =S, ()
0,-0,=38, (d)
For compressive stresses,
o -6=-5 (e)
0, - 0y=-5, ()
0y -0, =5, (2)
The above equations can be written as,
g, -0,==%8, [Assuming S =S, |
. ] .

03— 0 =+5,,

Region of Safety For bi-axial stresses,

a, =10
The above equations can be written as,
o-a=*+5, (h)
0, =15, (i)
0 =15, ()

It will be observed at a later stage that Eq. (h)

Bowundary for Maxinuum Shear Stress Theory are applicable in second and fourth quadrants,

_'/JL—J:\' T -0y +oy
Ty = l 5 J Tn = 5 18
kS p}'f—
0, -0, A E
Ty =|—F (a) {)""f T2 = 0.5 Sy
- X a5
The largest of these stresses is equated to (7 ) &/ H ™7 al e,
or (S,./2). —Syr S
.-r D O \\ +S}’T
Considering factor of safety, ‘;3 ,x'f:ri‘
(0, -0, ) _ Sy £ £ Lo . Shear
i YT Ot fagonal
g —Syt oyl = —1
o (0,-0,)= f—’ .33 Y fo
J5) under Bi-axial Stresses
f Sy
o, —0,)= —
s,
o, —0) = —— (4.39
NN )
The above relationships are used to determine
the dimensions of the component. Refer to

expression (a) again and equating the largest shear
stress (T, ) to (5, /2),

0,-0, ) Su
2 ) 2
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while Eqgs (i) and (j) are applicable in the first and
third quadrants of the diagram.

The construction of region of safety is illustrated
in Fig. 4.33. The two principal stresses @, and
@, are plotted on the X and Y axes respectively.
Tensile stresses are considered as positive, while
compressive stresses as negative.
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It should be noted that,

(i) The equation (x —y = — a) indicates a
straight line in the second quadrant with (—a)
and (+ a) as intercepts on the X and Y axes
respectively.

(i) The equation (X —y = + a) indicates a
straight line in the fourth quadrant with (+ a)
and (— a) as intercepts on the X and Y axes
respectively.

The borderline for the region of safety for this

theory can be constructed in the following way:

Step 1: In the first quadrant, both (&) and (0%)
are positive or tensile stresses. The vielding
will depend upon where (@,) or (0,) is greater in

magnitude.
Suppose a0, = 0,
The boundary line will be,
o=+ 35y
A vertical line 47 is constructed such that
0, =+ 85,
Suppose 0 = 0y

The boundary line will be,
&=t3,

A horizontal line ¢g is constructed such that a;
=+ 8,

Step..E: In the third quadrant, both (o)) and (o)
are negative or compressive stresses. The vielding
will depend upon whether (@,) or (o) is greater in

magnitude.

Suppose g, =0,

The boundary line will be,
o =—-98,

A vertical line g is constructed such that
o =—25,

Suppose 0, = '

The boundary line will be,
o =—5,

A horizontal line EF is constructed such that
a,=-5,

Step 3: In the sce.nd and fourth quadrants, ()
and (o,) are of opposite sign. One stress is tensile
while the other is compressive. The vielding will
occur when,
0 -0, =15,
In the second quadrant, line )¢ is constructed
such that,
O —-0,=— 5,
It is observed that the intercept of the above line
on the X-axis (&, =0) is (- S,,) and intercept on the
Y-axis (07 = 0) is (+ §,,). '
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Step 4: In the fourth quadrant, line fFgq is
constructed such that,
o, -0, =+ SI-.‘

It is observed that the intercept of the above line
on the X-axis (@, =0) is (+ S,;) and intercept on the
Y-axis (o, = 0)is(- S ).

The complete region of safety is the hexagon
ABCDEFA.

In case of bi-axial stress, if a point with
coordinates (&, ) falls outside this hexagon
region, then it indicates the failure condition. On
the other hand, if the point falls inside the hexagon,
the design is safe and the failure may not occur.

Shear Diagonal Shear diagonal or line of pure
shear is the locus of all points, corresponding to
pure shear stress. It will be proved at a later stage
(Fig. 4.35) that for pure shear stress,
G =-0=1;
The above equation can be written as,
g,

= —1 = —tan (45°
o, n (45%)

Aline ;4 is constructed insuch a way thak it passes
through the origin O and makes an angle of — 45° with
the Y-axis. This line is called shear diagonal or line
of pure shear. This line intersects the hexagon at two
points (7 and H. The point of intersection of lines F4

-+

(6,—6,=+S,)and GH [ﬂ - _1] is G.
Solving two equations simultaneously,

G-l. = — G-: = | SI_.IJ.IE
Since O =—G=T)

Since the point (¢ is on the borderline, this is the
limiting value for shear stress.

. 1
or Sip =55,
The maximum shear stress theory of failure is widely
used by designers for predicting the failure of com-

ponents, which are made of ductile materials, like

Department of Mechan transmission shaft.
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* DISTORTION-ENERGY THEORY

» This theory was advanced by MT Huber in Poland(1904)
and independently by R von Mises in Germany (1913)
and H Hencky (1925). It is known as the Huber von
Mises and Hencky’s theory. The theory states that the
failure of the mechanical component subjected to bi-axial
or tri-axial stresses occurs when the strain energy of
distortion per unit volume at any point in the component, o 4 Ta0 O
becomes equal to the strain energy of distortion per unit
volume in the standard specimen of tension-test, when (a) {b) (c)
yielding starts.

Aunit cube subjected to the three principal stresses

@y, & and @ is shown in Fig. 4.34(a). The total strain
energy [/ of the cube is given by,

¥z Tad 0y

Fig. .34 (a) Elesnent with Tri-axial Stresses (b) Stress
Components due fo Distortion of Element (c) Stress
Components due fo Change of Volume

U= ]?JLEL +%f:r2.=:2 +%J3E3 (a)
= - = . . The total strain energy U is resolved into two components—fi rst
x?rhere £, & and & are strains in respective direc- Uv corresponding to the change of volume with no distortion of
tions. the element and the second Ud corresponding to the distortion of
Also. e — l[J (0, +62)] the element with no change of volume. Therefore,
o T gl 2 T3 U =Uv + Ud (d)

The corresponding stresses are also resolved into two

£, = E[JE — (o, +03)] components as shown in Fig. 4.34 (b) and (c). From the fi gure

1
& =0 — (0, +0,)] (b) 0, = Ot o,
Substituting the above expressions in Eq. (a), 027 027~ Oy
0, =0,= 40,

r 1 2 2 2
U = ﬁ[{n:rl +0; +03)

—2U(0,0, + 0,05 +0,0,)] (c)
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=g gl ¥ T

The components &, Gayand o ycause distortion of
the cube, while the component &, results in volumet-
ric change. Since the components @, ;, Gzand 0y, do
not change the volume of the cube,

Eld+62d+'€3d={] (f}
Also,
1 = 10 ~ H(O2g + 03]
20 = 1024 ~ KOs +03)]
fu =500~ HO+ 0] @

Substituting Eq. (g) in Eq. (),
(1 -2 (T4 + Oagt+ G391 =0

Since (1-2u) =0
(O1g+ Oay+ O39) =0 (h)
From Eq. (h) in Eq. {e),
1 .
5u=§('51+52 +03) §)]

The strain energy U, corresponding to the change of
volume for the cube is given by,

g.E,
U, = 3[ 2 } (k)
1

Also &, = 7o, - p(o, +0,)]

or e, = L200% 0
From expressions (k) and (1),
_3(-2mo;

U, == (m)

Substituting expression (j) in the Eq. (m),
U, = _(1=-2p) (0, + 0, + 63] ()

6F
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Fig. 4.35 (a) Element subjected to Pure Shear
Stresses (b) Mohr's Circle for Shear Stresses
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From expressions (c) and (n},
U;=U0-U,

+(0, —03)" +(0; —0,)°] (4.40)
In simple tension test, when the specimen starts
yielding,

GI=SH

1+4) s
Ud' = [f]s-”

From Eqs (4.40) and (4 41), the criterion of failure for
the distortion energy theory is expressed as

and Fy=0,=10

Therefore, (4.41)

25;_.; = I:{‘:’L - 0,)" +(0, - 03)" + (0, _‘71}21

1 2
or 8, = E[(GL - 0,)
Hor - 03 +(05 -0 | (442)

Considering the factor of safety,

S
ﬁ = 1|||_|:|:’U'-l o, )

Ho, — 03 +(0;—0))* | (4.43)

For birm:ial stresses (@, =0),

(4.44)

{ﬁ} = V{{o-l o-lgl + 021)

A component subjected to pure shear stresses
and the comesponding Mohr’s circle diagram is
shown in Fig. 4.33.
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