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From the figure,
O, =-0,=17, and 0O3;=0
Substituting these values in Eq. (4.42),
S,=\1,

Replacing (7, ) by 5,
g = Si

LY “\.ﬁ
Therefore, according to the distortion-energy

theory, the yield strength in shear is 0.577 times the
yield strength in tension.

=0.577 5, (4.45)

Region of Safety  The construction of the region of
safety is illustrated in Fig. 4.36. The two principal
stresses O and @, are plotted on the X and ¥ axes
respectively. Tensile stresses are considered as

+
positive, while compressive stresses as negative. 5
+
Tt should be noted that, [
Poxptp=a ). R
i i & & & & N o
is an equation of an ellipse whose semi-major axis BN
. - .. Sy ~ +tm
is (an) and semi-minor axis is (V2/3 a). ol S
5,
" i

T:g = D.ﬁ?? S}.f
For bi-axial stresses, “
- . *- Shear
S . ?—3 0 2 E”]fsez = 53 T diagonal
Substituting this value in Eq. (4.42), =Gt Oy = op oylop = —1
2 1_ o2
Or —0103 +03 = oy Fig. 436 Boundary for Distortion  Energy

The above equation indicates an ellipse whose
ZeMmi-major axis is [xI'E 5,,) and semi-minor axis is

E
V3>

T.I'if-u:rry wrnder Bi-axial Stresses
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Shear Diagonal As mentioned in the previous
section, shear diagonal or line of pure shear is the
locus of all points, corresponding to pure shear
stress. The condition for the line of shear is,

0 =-02=1Tp2

The above equation can be written as

il

— = —1 = —tan{45"

o, (457)
Aline AR is constructed in such a way that it passes
through the origin ¢ and makes an angle of — 45°
with the ¥-axis. This line is called shear diagonal or
line of pure shear. This line intersects the ellipse at
two points 4 and B.

A i the point of intersection of the ellipse and the

line AB. The coordinates of the point 4 are obtained by

solving the following two equations simultaneoushy,

2 2 2
D-l. —0101 +D-1 = I

Tiag,=—1
Solving two equations simultaneously,
O =—0; = +%5‘”
Since O =—02=1Tp2
Ta = %Sﬂ = 05775,

Since the point 4 is on the borderline, this is the
limiting value for shear stress.

o S, =05775,
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Fig. 4.37 Comparison of Theories of Failure

Department of Mechanical Engineering

112




Lecture Machine Design

« SELECTION AND USE OF FAILURE THEORIES

+ (i) Ductile materials typically have the same tensile strength and compressive strength. Also, yielding is the criterion of failure in
ductile materials. In maximum shear stress theory and distortion energy theory, it is assumed that the yield strength in tension (Syt)
is equal to the yield strength in compression (Syc). Also, the criterion of failure is yielding. Therefore, maximum shear stress theory
and distortion energy theory are used for ductile materials.

« (ii) Distortion energy theory predicts yielding with precise accuracy in all four quadrants. The design calculations involved in this
theory are slightly complicated as compared with those of maximum shear stress theory.

 (ili) The hexagonal diagram of maximum shear stress theory is inside the ellipse of distortion energy theory. Therefore, maximum
shear stress theory gives results on the conservative side. On the other hand, distortion energy theory is slightly liberal.

* (iv) The graph of maximum principal stress theory is the same as that of maximum shear stress theory in the fi rst and third
guadrants. However, the graph of maximum principal stress theory is outside the ellipse of distortion energy theory in the second
and fourth quadrants. Thus, it would be dangerous to apply maximum principal stress theory in these regions, since it might predict
safety, when in fact no safety exists.

* (v) Maximum shear stress theory is used for ductile materials, if dimensions need not be held too close and a generous factor of
safety is used. The calculations involved in this theory are easier than those of distortion energy theory.

» (vi) Distortion energy theory is used when the factor of safety is to be held in close limits and the cause of failure of the component
is being investigated. This theory predicts the failure most accurately.

 (vii) The compressive strength of brittle materials is much higher than their tensile strength. Therefore, the failure criterion should
show a difference in tensile and compressive strength. On this account, maximum principal stress theory is used for brittle
materials. Also, brittle materials do not yield and they fail by fracture.

« To summarise, the maximum principal stress theory is the proper choice for brittle materials. For ductile materials, the choice of
theory depends on the level of accuracy required and the degree of computational diffi culty the designer is ready to face. For
ductile materials, the most accurate way to design is to use distortion energy theory of failure and the easiest way to design is to
apply maximum shear stress theory
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A cantilever beam of rectangular

cross-section is used to support a pulley as shown
in Fig. 4.38 (a). The tension in the wire rope is 5
kKN. The beam is made of cast iron FG 200 and the
factor of safety is 2.5. The ratio of depth to width of
the cross-section is 2. Determine the dimensions of

the cross-section of the beam.

Solution
Given FP=5kN S, = 200 N/mm*
(f5)=2.5 dw=2

Step I  Calculation of permissible bending stress

5 200
W27 %0 N/mm®

{]'h = =
() 25
Step I Calculntion of bending moments

The forces acting on the beam are shown in
Fig. 4.3%(b). Referring to the figure,

(M), 5 = 5000 x 500 = 2500 x 10° N-mm
(M), , = 5000 x 500 + 5000 = 1500
= 10000 * 10° N-mm
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2500 % 103
c)
10000 x 103
Fig 4.38
tep III  Calculation of dimensions of cross-section
"he bending moment diagram is shown in Fig. 4.38(c).

'he cross-section at A is subjected to maximum bend-
1g stress. For this cross-section,

y=S=w  I=—{m)@w]=3v" mn*

My o Sﬂzﬁlﬂﬂﬂﬂxlﬂl}{w}

o 5
3

‘herefore,
w=5724mmor 60 mm 4=2w=120'fim
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« A wall bracket with a rectangular Step I Calculation of direct and bending tensile stresses
The stress is maximum at the point 4 in the section

* cross-section is shown in Fig. 4.39. The depth of XX. The point is subjected to combined bending and

« the cross-section is twice of the width. The force direct tensile stresses. The force P is resolved into two
components—horizontal component £, and 1-sartin::a]|

» P acting on the bracket at 600 to the vertical is 5 component P,

« kN. The material of the bracket is grey cast iron P, = P sin 60° = 5000 sin 60°=4330.13 N

P, =P cos 60° =5000 cos 60° = 2500 N

* FG 200 and the factor of safety is 3.5. Determine The bending moment at the section XX is given by

- the dimensions of the cross-section of the bracket. M, =P x 150 + P, % 300
) ] =4330.13 > 150 + 2500 300
» Assume maximum normal stress theory of failure. = 139952 % 10 N-mm
3{:":' I , — 11#.'1'_1"
+ I
FEN : ,
W i 139952 107 )(r) 209928 =107 2
?hh PF'I ! I X)) _ - N/mm*~
607 | — (@21 :
150 L [lﬂ 10
The direct tensile stress due to component P} is
— ! I"l' Ao given by,
a4 ___-" ] _£_433U_|3_1|f‘15U? 17 2
® } __,/ ag, = 1 2 7 = 2 N/mm

The vertical component P, induces shear stress at the
Fig.4.39 Wall Bracket section XX It is however small and neglected.

Solution
Given FP=5kN
§,=200N/ mm? (f5)=35 dw=2
Step I Calculation of permissible stress
5, 200
Jma.*’. = . =
(fs) 3.5

=57.14 N/mm* (1)
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